Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439994

RESUMO

Blockchain-based reliable, resilient, and secure communication for Distributed Energy Resources (DERs) is essential in Smart Grid (SG). The Solana blockchain, due to its high stability, scalability, and throughput, along with low latency, is envisioned to enhance the reliability, resilience, and security of DERs in SGs. This paper presents big datasets focusing on SQL Injection, Spoofing, and Man-in-the-Middle (MitM) cyberattacks, which have been collected from Solana blockchain-based Industrial Wireless Sensor Networks (IWSNs) for events monitoring and control in DERs. The datasets provided include both raw (unprocessed) and refined (processed) data, which highlight distinct trends in cyberattacks in DERs. These distinctive patterns demonstrate problems like superfluous mass data generation, transmitting invalid packets, sending deceptive data packets, heavily using network bandwidth, rerouting, causing memory overflow, overheads, and creating high latency. These issues result in ineffective real-time events monitoring and control of DERs in SGs. The thorough nature of these datasets is expected to play a crucial role in identifying and mitigating a wide range of cyberattacks across different smart grid applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38261494

RESUMO

Alzheimer's Disease (AD) is a widespread, chronic, irreversible, and degenerative condition, and its early detection during the prodromal stage is of utmost importance. Typically, AD studies rely on single data modalities, such as MRI or PET, for making predictions. Nevertheless, combining metabolic and structural data can offer a comprehensive perspective on AD staging analysis. To address this goal, this paper introduces an innovative multi-modal fusion-based approach named as Dual-3DM3-AD. This model is proposed for an accurate and early Alzheimer's diagnosis by considering both MRI and PET image scans. Initially, we pre-process both images in terms of noise reduction, skull stripping and 3D image conversion using Quaternion Non-local Means Denoising Algorithm (QNLM), Morphology function and Block Divider Model (BDM), respectively, which enhances the image quality. Furthermore, we have adapted Mixed-transformer with Furthered U-Net for performing semantic segmentation and minimizing complexity. Dual-3DM3-AD model is consisted of multi-scale feature extraction module for extracting appropriate features from both segmented images. The extracted features are then aggregated using Densely Connected Feature Aggregator Module (DCFAM) to utilize both features. Finally, a multi-head attention mechanism is adapted for feature dimensionality reduction, and then the softmax layer is applied for multi-class Alzheimer's diagnosis. The proposed Dual-3DM3-AD model is compared with several baseline approaches with the help of several performance metrics. The final results unveil that the proposed work achieves 98% of accuracy, 97.8% of sensitivity, 97.5% of specificity, 98.2% of f-measure, and better ROC curves, which outperforms other existing models in multi-class Alzheimer's diagnosis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Semântica , Imageamento por Ressonância Magnética/métodos , Algoritmos , Tomografia por Emissão de Pósitrons/métodos
3.
PLoS One ; 18(9): e0289868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682816

RESUMO

In Millimeter-Wave (mm-Wave) massive Multiple-Input Multiple-Output (MIMO) systems, hybrid precoders/combiners must be designed to improve antenna gain and reduce hardware complexity. Sparse Bayesian learning via Expectation Maximization (SBL-EM) algorithm is not practically feasible for high signal dimensions because estimating sparse signals and designing optimal hybrid precoders/combiners using SBL-EM still provide high computational complexity for higher signal dimensions. To overcome the issues of high computational complexity along with making it suitable for larger data sets, in this paper, we propose Learned-Sparse Bayesian Learning with Generalized Approximate Message Passing algorithm (L-SBL-GAMP) algorithm for designing optimal hybrid precoders/combiners suitable for mmWave Massive MIMO systems. The L-SBL-GAMP algorithm is an extension of the SBL-GAMP algorithm that incorporates a Deep Neural Network (DNN) to improve the system performance. Based on the nature of the training data, the L-SBL-GAMP can design the optimal Hybrid precoders/combiners, which enhances the spectral efficiency of mmWave massive MIMO systems. The proposed L-SBL-GAMP algorithm reduces the iterations, training overhead, and computational complexity compared to the SBL-EM algorithm. The simulation results unveil that the proposed L-SBL-GAMP provides higher achievable rates, better accuracy, and low computational complexity compared to the existing algorithm, such as Orthogonal Matching Pursuit (OMP), Simultaneous Orthogonal Matching Pursuit (SOMP), SBL-EM and SBL-GAMP for mmWave massive MIMO architectures.


Assuntos
Algoritmos , Aprendizagem , Teorema de Bayes , Simulação por Computador , Redes Neurais de Computação
4.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36991714

RESUMO

BACKGROUND: Continuous surveillance helps people with diabetes live better lives. A wide range of technologies, including the Internet of Things (IoT), modern communications, and artificial intelligence (AI), can assist in lowering the expense of health services. Due to numerous communication systems, it is now possible to provide customized and distant healthcare. MAIN PROBLEM: Healthcare data grows daily, making storage and processing challenging. We provide intelligent healthcare structures for smart e-health apps to solve the aforesaid problem. The 5G network must offer advanced healthcare services to meet important requirements like large bandwidth and excellent energy efficacy. METHODOLOGY: This research suggested an intelligent system for diabetic patient tracking based on machine learning (ML). The architectural components comprised smartphones, sensors, and smart devices, to gather body dimensions. Then, the preprocessed data is normalized using the normalization procedure. To extract features, we use linear discriminant analysis (LDA). To establish a diagnosis, the intelligent system conducted data classification utilizing the suggested advanced-spatial-vector-based Random Forest (ASV-RF) in conjunction with particle swarm optimization (PSO). RESULTS: Compared to other techniques, the simulation's outcomes demonstrate that the suggested approach offers greater accuracy.


Assuntos
Diabetes Mellitus , Telemedicina , Humanos , Inteligência Artificial , Aprendizado de Máquina , Sistemas de Identificação de Pacientes
5.
Comput Intell Neurosci ; 2022: 4411876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093479

RESUMO

The focus of this research is to isolating and identifying bacteria that produce calcite precipitate, as well as determining whether or not these bacteria are suitable for incorporation into concrete in order to enhance the material's strength and make the environment protection better. In order to survive the high "potential of hydrogen" of concrete, microbes that are going to be added to concrete need to be able to withstand alkali, and they also need to be able to develop endospores so that they can survive the mechanical forces that are going to be put on the concrete while it is being mixed. In order to precipitate CaCO3 in the form of calcite, they need to have a strong urease activity. Both Bacillus sphaericus and the Streptococcus aureus bacterial strains were evaluated for their ability to precipitate calcium carbonate (CaCO3). These strains were obtained from the Department of Biotechnology at GLA University in Mathura. This research aims to solve the issue of augmenting the tension and compression strengths of concrete by investigating possible solutions for environmentally friendly concrete. The sterile cultures of the microorganisms were mixed with water, which was one of the components of the concrete mixture, along with the nutrients in the appropriate proportions. After that, the blocks were molded, and then pond-cured for 7, 28, 56, 90, 120, 180, 270, and 365 days, respectively, before being evaluated for compressibility and tensile strength. An investigation into the effect that bacteria have on compression strength was carried out, and the outcomes of the tests showed that bacterial concrete specimens exhibited an increase in mechanical strength. When compared to regular concrete, the results showed a maximum increase of 16 percent in compressive strength and a maximum increase of 12 percent in split tensile strength. This study also found that both bacterial concrete containing 106, 107, and 108 cfu/ml concentrations made from Bacillus sphaericus and Streptococcus aureus bacteria gave better results than normal concrete. Both cluster analysis (CA) and regression analysis (RA) were utilized in this research project in order to measure and analyze mechanical strength.


Assuntos
Bacillaceae , Materiais de Construção , Bacillaceae/metabolismo , Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Materiais de Construção/análise , Materiais de Construção/microbiologia , Humanos , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...